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CHAPTER 1

Lab 1 - Custom stopping/output criteria

1.1 Intro

In the MESA Tutorial, we learned how to add various stopping criteria to MESA. Typically these are of the form “stop
when a certain varibale passes a certain threshold”. Often this is enough, but sometimes you want more complicated
stopping criteria - or maybe you’ll want to save a bunch of profiles/models at 100 different times without chaining
together 100 different inlists.

1.2 Setup

Make a local copy of the work directory, you can name it whatever you want. Go to the location you want to place the
copied work directory and type

cp -r $MESA_DIR/star/work work_kevin_part1

where work_kevin_part1 can be replaced with any name you want to use. You’ll then want to check that every-
thing worked fine by compiling and running things with the normal commands

./mk

./rn

Any time we change the code of the files in the local src directory, we must recompile the code!

1.3 Exercise 1 - Profile output criteria in inlists

Recall that MESA provides two output file types by default as it runs:

• History files (eg. work/LOGS/history.data) give the global properties of the star as a function of time.
This is the file you’d look in if you wanted to make an HR diagram or a luminosity vs. time plot.

• Profiles (eg. work/LOGS/profile37.data) give a spatial slice of the star at a fixed time. This is the type
of file you’d look in if you wanted to make a plot of temperature vs. pressure or abundances vs. mass coordinate.

If you want to save a profile through inlist controls (see eg. the &controls documentation in
mesa/star/defaults/controls.defaults), you can save profiles at a given timestep interval, through,
eg.

profile_interval = 50
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and/or save one on termination with (in the &star_job section)

write_profile_when_terminate = .true.
filename_for_profile_when_terminate = ’my_profile_name.data’

If you have some special criteria you want to save profiles on, then you’d need to use a separate inlist for each
criterion and save a profile on termination. While this works, it’s kind of a pain if you want to run a grid of models
or change some parameters of your run since you need to modify all the inlists. If you want to have these same
output criteria for a grid of stars, each with slightly different input parameters, then you can put the stopping criteria
in run_star_extras.f.

MESA always reads its parameters from a file named inlist. In the default work directory we copied, this inlist
file just reads from another file named inlist_project. This allows you to have several different inlists in your
directory, only needing to change the file that inlist itself reads from through the lines

extra_star_job_inlist1_name = ’inlist_project’
extra_controls_inlist1_name = ’inlist_project’
extra_pgstar_inlist1_name = ’inlist_pgstar’

We’re going to run a 20𝑀⊙ star through the main sequence here, and want to save profiles and models at three different
abundance criteria: 𝑋center = 0.69, 𝑋center = 0.40, and 𝑋center = 0.01. You can just take the inlist_project
file and copy it into three new inlist files that we’ll slightly modify. What all needs to be changed?

• stellar mass - now 20 𝑀⊙

• profile output criteria - see above

• stopping criteria - see below

The stopping criteria in the inlists go in the &controls section and are as follows. You should name your inlists
something descriptive to help you keep track of them - the names and stopping criteria I used are as follows:

First inlist (inlist_to_h_ignition):

xa_central_lower_limit_species(1) = ’h1’
xa_central_lower_limit(1) = 0.69

Second inlist (inlist_to_h_burn):

xa_central_lower_limit_species(1) = ’h1’
xa_central_lower_limit(1) = 0.40

Third inlist (inlist_to_h_depletion):

xa_central_lower_limit_species(1) = ’h1’
xa_central_lower_limit(1) = 0.01

To save time, you should save models at the end of the first and second inlists and load them into the sedond and third
inlist, repsectively. To save a model, you can add to the &star_job section of your inlist (for example)

save_model_when_terminate = .true.
save_model_filename = ’h_ignition.model’

and to load a model, you can add (also to the &star_job section)

load_saved_model = .true.
saved_model_name = ’h_ignition.model’

Here, your only task is to verify that these inlists work as intended (i.e. you get three profiles out with the different
names you gave them). Enjoy watching the PGSTAR plots!

4 Chapter 1. Lab 1 - Custom stopping/output criteria
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Note: There are example shell scripts on how to automate chaining multiple inlists together so that you only need to
execute one command to run the whole batch. See, for example, mesa/star/test_suite/make_planets. You still have the
inconvenience of having to edit multiple inlists to change parameters.

1.4 Exercise 2 - Data output criteria in run_star_extras.f

1.4.1 Profiles

Your next task is to express the profile output criteria in the inlists from the previous section in
run_star_extras.f. This way you only need to modify one inlist which makes things much more convenient
when changing things such as resolution.

Recall from the run_star_extras.f tutorial (see here) that you need to replace the include statement in
src/run_star_extras.f

include ’standard_run_star_extras.inc’

with a copy/paste of the contents of that file (located in mesa/star/job). Check that this works by compiling
and running again. There’s no need to run to completion - you should just verify that the code still compiles/runs
before making further changes. This is good advice for starting any modification of MESA. As with voting, you should
recompile early and often - it will help prevent you having to look through a bunch of changes that all of a sudden
aren’t compiling!

Look through the documentation of the provided procedures you copy/pasted into run_star_extras.f and find
which one you should put output/stopping criteria in (when in the time step do you want to check these criteria?).

The recommended option is (highlight below to reveal):

You can express your output criteria using the star_info data structure which contains all the info MESA knows
about your star. Look in mesa/star/public/star_def.f for the definition of this data structure. Lots of
the variables are included from other files so they’re not all listed explicitly in star_def.f (in particular, most of
the variables are actually defined in mesa/star/public/star_data.inc). You need to find the names of the
composition variables (there are many options that will work) in order to write output criteria. Throughout MESA’s
code, you’ll see this stucture refered to as s, so if you see something like s% mass(k) then that just means look
inside the structure s for the array mass and give me the kth entry.

If you’re having trouble finding the right variable to use, try (highlight below to reveal)

Once you can express your criteria in if/then statements, you need the subroutines for outputting models/profiles.
These are listed in mesa/star/public/star_lib.f, so search there for the right ones. You can call all of these
subroutines from run_star_extras.f because they are already included using the line at the top

use star_lib

If you can’t find a suitable subroutine there, try looking at (highlight below to reveal)

Note that while the call signatures of these subroutines require you to pass several things to them (includ-
ing other subroutines!), most of these have the same names in run_star_extras.f so you shouldn’t
need to track down additional arguments. The main difference between using this method versus setting s%
need_to_save_profiles_now = .true. is that calling the subroutine allows us to specify the profile’s
name, while s% need_to_save_profiles_now = .true. just tells MESA to output a profile using its stan-
dard naming conventions (so you’ll get a profile named profileXX.data with whatever profile number you’re
on).

Finally, you need to slightly modify the inlists from before. I’d suggest making a new one (eg. inlist_full) that
will run the star through the entire main sequence and output the three profiles at the right points. What’s the inlist
stopping criteria now? Do you need any profile output statements?

1.4. Exercise 2 - Data output criteria in run_star_extras.f 5
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Check that you again produce the same results as you did with the multiple inlists.

1.4.2 Models

You can also save model files from run_star_extras.f for use as restart points using a similar subroutine. Take
a look through mesa/star/public/star_lib.f to find it.

1.4.3 Stopping criteria in run_star_extras.f

Specifying a stopping criterion is the same as what we did in the previous part, except instead of calling subroutines
to output profiles or model files, we send MESA/star a command that tells it to stop evolution. Notice at the beginning
of the function extras_finish_step(), it is set to return the value

extras_finish_step = keep_going

which tells MESA/star to keep calm and carry on evolving the star. If you want to terminate the evolution for some
reason, then you can instead set the function to return the value

extras_finish_step = terminate

among other possible integer stop codes listed in the extras_check_model() function located in
run_star_extras.f. You can also return termination codes from that function. Documentation is provided
on how to output custom messages for different stopping criteria in that function as well.

1.5 Brief overview of PGSTAR

Frank’s lab will cover making custom PGSTAR plots in more detail, but you’ll want some graphical output to stare
at while your stars are evolving. There are two things you need to put in your inlist to make sure you have graphical
output. In the &star_job section, you need to enable PGSTAR with the line

pgstar_flag = .true.

and in the &pgstar section, you need to specify what plots you want to see. The grid windows (several plots at once)
are the best for starting out since they give you a dense set of info. Try turning on one of these windows with

Grid1_win_flag = .true.

You should also tell PGSTAR not to close the plots as soon as the run is over so you can still see what your star looked
like at the end. You can do this with the line (also in &pgstar)

pause = .true.

MESA reads the &pgstar section of the inlist at each time step, so you can add and modify plots virtually in real
time. Try it!

6 Chapter 1. Lab 1 - Custom stopping/output criteria



CHAPTER 2

Lab 2 - Adding new variables & using star_info structure

2.1 Intro

In this section, we’ll practice extracting data from the star_info structure and use it to calculate some auxillary
variables. In this activity, you should start by making a fresh copy of the mesa/star/work directory in your local
work space. Name it whatever you want, for example

cp -r $MESA_DIR/star/work work_kevin_part2

2.2 Exercise 1 - Finding what MESA calculates

The global dynamical time scale of a star is given by

𝑡dyn ∼ (𝐺 ⟨𝜌⟩)−1/2

where ⟨𝜌⟩ is some measure of the mean stellar density. Within prefactors, this is the free-fall time at the stellar surface
as well as the Keplerian orbital frequency there. MESA already calculates a dynamical timescale at every cell in the
star. How is it defined?

Search through MESA/star and find where this is calculated. What is the exact formula?

But what’s the name of the variable to search for? That’s part of what you’re looking for. This may seem like a silly
activity, but when you’re writing your own code for MESA this type of question comes up over and over so it’s good
to get some practice hunting things down.

If you’re having trouble, try narrowing your search to (highlight to reveal):

The definition you should find is (highlight to reveal):

which definition of the dynamical time does this prefactor correspond to?

2.3 Exercise 2 - Calculating the dynamical time scale(s)

Now that we know what MESA is calculating, what if we want a slightly different calculation? Perhaps we have a
planet with a massive core and just want to use the central density for ⟨𝜌⟩, or instead take a mass-weighted average of
the densities of interior cells.

The first step is to tell MESA that you’re going to be adding some extra user-defined columns to the profiles. This is
done through the function how_many_extra_profile_columns() simply by making the return value equal to
the number of extra columns you’re adding. We’ll start with just one,

7
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how_many_extra_profile_columns = 1

The next step will be to fill in a placeholder for our dynamical timescale calculation, just to check that the code is set
up correctly before we start trying to do calculations with the star_info data. This will go in the subroutine right
below, data_for_extra_profile_columns().

We can modify the inlist_project file if we want, but the default one will still spit out profiles every 50 steps,
so we can leave it as it is. You should get 90 columns by default, so any you add will go at the end.

2.3.1 Center density approach

Let’s start out really simple and make a new dynamical timescale based on just the central density of the star. This is
a pretty useless value to put in a profile since it’s not even spatially-dependent, but we’ll start with the easiet thing to
code up. Inside data_for_extra_profile_columns(), there’s an example calculation in the documentation,
we’ll start out with a similar scaffold and just set everything equal to zero to check if things still compile.

!We’re going to try and calculate some dynamical time scales:
names(1) = ’t_dyn (central)’
do k = 1, nz

vals(k,1) = 0d0
end do

Check that this works (you should get a 91st column in your profiles that’s filled with all zeroes), and then figure out
how to to the calculation with central density, 𝑡dyn = (𝐺 ⟨𝜌𝑐⟩)−1/2. One possible solution is (highlight to reveal):

Running this should make all the cells in your new profile column have the same value. For profile10.data, I
got 𝑡dyn ≈ 6.3× 104 s.

2.3.2 Mass-weighted average density approach

Another, more realistic, way to estimate the dynamical time would be to use a mass-weighted mean density of the
interior cells. This requires for each cell k, looping over the cells interior to k (what indicies are those?) and finding
the mass-weighted mean density.

If you get stuck, my code looked like this (highlight):

Remember to declare any new variables you need and to set

how_many_extra_profile_columns = 2

You should now have two extra columns, the mass-weighted calculation should be linearly increasing from the core
outward and equal to the value of the central density method at the central point since our formulae should be the same
there.

2.3.3 Comparison to sound crossing time

Our last goal is to compare these calculations with the sound-crossing time through the interior of the star, another
measure of how fast parts of the star can respond to perturbations. This calculation should be similar to the previous
section, except you’ll want to approximate the integral

𝑡sound(𝑟) = 2
∫︀ 𝑟

0
𝑑𝑟
𝑐𝑠

in MESA. There are several ways to calculate this given the variables in the star_info pointer, give one a try.
Again, my solution is below (highlight):

How is this different from the other values we calculated? Why do you think this is?

8 Chapter 2. Lab 2 - Adding new variables & using star_info structure



CHAPTER 3

Lab 3 - Specifying custom physics with other_*

3.1 Intro

In this part, we’ll look at how to modify how MESA evolves stars (eg. the equations it solves, the micro/macrophysics
it employs, etc.). There are many ‘hooks’ you have access to in order to change how MESA’s internals function, and
these are the other_* subroutines (see mesa/star/other for all of them). Each subroutine broadly lets you
overwrite a subroutine that calculates some piece of physics for MESA/star.

The hook subroutine we’ll use here is other_mlt(), which MESA uses as a helper method when solving for the
structure of a star. It’s called on each cell of the star during each Newton iteration and its job is to determine the mixing
type of the cell and figure out its temperature gradient, given the local conditions. Again, we’ll be starting with a fresh
copy of the work directory, which you can make via

cp -r $MESA_DIR/star/work work_kevin_part3

3.2 Context for this code

This section is for your own info - not strictly necessary for the activities

Most of the code you’ll modify through these hooks is far removed from the actual evolution step, located in
mesa/star/private/evolve.f. The results you calculate are often passed through several intermediate wrap-
per routines before they’re attached to actual variables in the star_info structure. The MLT module is no different,
and we’ll briefly trace the subroutine calls in this section. Note: In your own research, you’ll want to follow similar
calls to whatever hook you’re using. It’s very important to know where your code gets called in relation to
the overall evolve step to ensure that your modifications work as you intend. The following is presented as an
example outline of how to trace the calls in MESA/star.

To get some more context of what the MLT module does during evolution, look for where mlt_eval() is called in
the private code. You should only see it called once - it’s immediately put inside a wrapper called do1_mlt_eval(),
defined in mesa/star/private/mlt_info.f.

So what does do1_mlt_eval() do? Aha! That’s the subroutine that checks for a user-defined subroutine if we set
use_other_mlt = .true. in the inlist. do1_mlt_eval() is in turn called from do1_mlt(), which finally
attaches the results of the MLT calculation to the corresponding stellar variables. do1_mlt() then is called from
set_mlt_vars(), which loops over a range of cells of interest and sets the MLT variables for each cell. We now
know where our changes will show up in mlt_info.f, and what subroutines MESA will use to interface with this.

Where does set_mlt_vars() appear in the overall structure of the evolution? It is only called from the
set_hydro_vars() subroutine located in mesa/star/private/hydro_vars.f. set_hydro_vars()
is called in two main places:

9
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1. During the Newton solve

Here, the calls initial come from subroutines in mesa/star/private/hydro_mtx.f, which contains sub-
routines that provide the implementation of various subroutines that get passed to the actual Newton solver.
set_hydro_vars() is called in set_vars_for_solver(), which is wrapped by set_newton_vars().
This is then called from eval_equations() in mesa/star/private/hydro_newton_procs.f which
is passed to the Newton solver though the setequ() subroutine in mesa/star/private/star_newton.f.
The actual Newton solve happens in the do_newton() subroutine which is wrapped by newton(). The
Newton solve is called from hydro_newton_step() inside mesa/star/private/solve_hydro.f
through the wrapper newt(). hydro_newton_step() is called from do_hydro_newton() which
is called from the function do_hydro_converge(). do_hydro_converge() is then called from
do_struct_burn_mix() in mesa/star/private/struct_burn_mix.f, which is finally called during
the top-level do_evolve_step() subroutine located in evolve.f.

2. After the Newton solve, during the main evolve step

In this part, set_hydro_vars() is called by the update_vars(), which is called by set_some_vars(),
which is called by two top-level subroutines in mesa/star/private/hydro_vars.f, set_vars() and
set_final_vars() (oh my). Finally, set_vars() and set_final_vars() are called in the top-
level do_evolve_step() subroutine located in evolve.f (set_vars() is called through the wrap-
per do_set_vars(), since its functionality changes slightly before/after element diffusion). Specifically,
do_set_vars() is called during the implicit �̇� loop, and set_final_vars() is called near the end of
do_evolve_step().

So in summary - after 4 levels of calls, our MLT calculations in run_star_extras.f bubble up to the sub-
routine set_hydro_vars(), which is called during every step of the Newton iteration (another 9 levels of
calls below the actual Newton solve in do_evolve_step()) as well as at the end of each call of each call of
do_evolve_step() (via set_final_vars()).

3.3 Exercise 1 - Enabling other_mlt()

Following the run_star_extras.f tutorial on the MESA homepage, there are a few steps in telling MESA to use
other_mlt().

1. The first step is to copy/paste the contents of mesa/star/job/standard_run_star_extras.inc
into your local work_kevin_part3/src/run_star_extras.f file.

1. The first step is to copy/paste the null_other_mlt() subroutine into run_star_extras.f, and rename
it to something like my_other_mlt().

2. Next, in the extras_controls subroutine of run_star_extras.f, you need to say you want MLT calls
to go though this new subroutine by setting

s% other_mlt => my_other_mlt

3. Finally, you also need to enable this new subroutine with the inlist command

use_other_mlt = .true.

in the &controls section. While it may seem redundant, this inlist flag is there so you can turn your custom
implementation on/off easily without having to recompile things.

Try everything out by compiling and running things as you normally would. Nothing should change in the output yet
when you toggle the use_other_mlt flag since my_other_mlt() is still calling the normal MLT subroutine.
It’s good practice to put a write statement in there to make absolutely sure it’s getting called - also so you can see how
often it’s being called since we have some expectation from tracing the subroutine calls above. Note: you should be
able to get an idea of how MESA is splitting the MLT calls among the different OpenMP threads from this output if
your environment variable ‘‘OMP_NUM_THREADS‘‘ is > 1. Try it out if you can!

10 Chapter 3. Lab 3 - Specifying custom physics with other_*
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Once you’ve verified that things are working as intended, you can comment out the output statements if you want since
they really slow things down.

3.4 Exercise 2 - Modifying the standard convection prescription out-
side mlt_eval()

MESA includes a variety of MLT calculations (see eg. Cox and Giuli’s Principles of Stellar Structure for the gory
details) that relate the local chemical/thermodynamic conditions to the temperature gradient and compositional mixing
rate.

Some aspects of this calculation are easier to change in the MESA implementation than others. We’ll go through some
of simpler cases first before tackling a more involved one in the next exercise. The first thing we’ll try is to slightly
increase the value for ∇ ≡ 𝜕 log 𝑇/𝜕 log𝑃 that mlt_eval() returns.

Look at the call signature of mlt_eval() as well as its implementation in mesa/mlt/public/mlt_lib.f
along with variables in mesa/mlt/public/mlt_def.f. Figure out where ∇ gets returned and modify it after
the mlt_eval() so that it gets increased/decreased by a fixed percentage. Start by making it 0.01% larger and
increase from there. How much can you increase ∇ before MESA has trouble converging. What do you think may be
causing problems?

You can also modify the chemical diffusion coefficent returned by mlt_eval() to adjust the speed at which con-
vecttion smooths out chemical gradients. There is an inlist control for this in the &controls section,

! mixing coefficients are multiplied by this factor
mix_factor = 1

which scales all of the mixing coefficients (eg. convection, thermohaline, semiconvection, rotational mix-
ing, etc.). While the specific rotational mixing components can be multiplied by specific factors (see
mesa/star/defaults/controls.defaults), you have to go into the code if you want to modify the mixing
rate of, say, convection alone.

Modify the variables returned by mlt_eval() so that you can scale the diffusion coefficient by a constant factor.
You may want to change the stopping criterion to be somewhere past the ZAMS so you can see a difference in the
evolution. In practive, perhaps you’d want to make this scaling a function of position, or thermodynamic conditions -
hopefully you can see how this could be done (you don’t need to actually do something like this here though).

3.5 Exercise 3 - Adding custom inlist controls

For the modifications we just made, it would be convenient if there was some way to toggle them or con-
trol their strength from the inlist. We can use additional controls, defined through the following variables (see
mesa/star/defaults/controls.defaults)

! extra params as a convenience for developing new features
! note: the parameter ‘num_x_ctrls‘ is defined in ‘star_def.f‘

x_ctrl(1:num_x_ctrls) = 0d0
x_integer_ctrl(1:num_x_ctrls) = 0
x_logical_ctrl(1:num_x_ctrls) = .false.

What is num_x_ctrls set to by default? Can you change this in the inlist? How do you refer to these parameters
through the star_info pointer, s?

Once you’ve answered those questions, try adding some sensible inlist controls to the modifications you just made.
As an example, one could be toggling the ∇ increaese on/off, or adjusting its strength. Check that such things work
before moving onto the next part.

3.4. Exercise 2 - Modifying the standard convection prescription outside mlt_eval() 11
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3.6 Exercise 4 - Modifying the standard convection prescription in-
side mlt_eval()

Here, we’ll slightly modify the MLT calculation to make the mixing length scale with temperature scale height instead
of pressure scale height. This part is much more involved, so take your time.

From looking at the call signature of mlt_eval(), it doesn’t get the scale height passed to it (just a logical flag
alt_scale_height and the mixing_length_alpha parameter that multiplies the scale height calculated in-
side). That means we have to actually go into the internals to change the definition of the scale height used in the MLT
calculation.

A brief outline of how to go about this:

1. Since we want to change how mlt_eval() functions without touching the private code, we should copy the
entire subroutine into our run_star_extras.f file. Search through mesa/mlt to find where it is defined,
you should find it in (highlight to reveal):

Unfortunately, it looks like mlt_eval() is just a wrapper for the private function do_mlt_eval(), which we can
again search for, finding it in (highlight to reveal):

The actual code we want to modify is do_mlt_eval(), and the various supporting methods it calls. You should
therfore copy/paste all the subroutines and functions in this file into your run_star_extras.f. Once they’re in
there, then they should replace the call to MESA’s public subroutine mlt_eval() with a call to your copy/pasted
local implementation, do_mlt_eval(). You should comment out the

use mlt_lib, only: mlt_eval
use mlt_def

lines in my_other_mlt() to make sure that it looks in this file for the modified subroutines instead of using the
MESA defaults.

2. In order to compile this new code, you’ll have include the MLT module at the top of run_star_extras.f.
Along with the other use statements, add the others that the copy/pasted subroutines are expecting,

use mlt_def
use mlt_lib
use crlibm_lib

You will also need to add the module variable (can put it right between the implicit none and contains
statements)

integer, parameter :: nvbs = num_mlt_partials

Finally, you also need to remove all the #ifdef blocks to get things to compile with the default makefile.

3. Once you’ve copy/pasted the private implementation and made the changes above, check that everything
still works as it should by compiling and running the code. Make sure all the functions required by
do_mlt_eval() are now in run_star_extras.f.

4. Now we can finally start making modifications to the convection routine! In the interest of time, the subroutine
that actually calculated the MLT results for convection is standard_scheme(), while the scale height is
define in Get_results(). Search for all the places where the scale height is used and instead of using the
pressure scale height, use the temperature scale height.

How do you calculate the temperature scale height here? The star_info pointer doesn’t get passed here! One way is
to extract the star_info pointer from the id variable in my_other_mlt() with the star_ptr() subroutine
(located in mesa/star/public/star_def.f) that fills in a star_info pointer that you have to declare (s
here) via the id variable.
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call star_ptr(id, s, ierr)

You can then extract the data necessary to calculate the temperature scale height and pass it down to
Get_results(). You have to be careful here and pass it as an argument rather than making it a module vari-
able since there is a different value for every cell and the my_other_mlt() subroutine will be called in parallel (as
you saw in Exercise 1). You may be able to get away with making it a module variable using the OpenMP directive,

!$OMP THREADPRIVATE(temperature_scale_height)

but I’m not sure if that would prevent all the possible problems, and that’s way beyond the scope of this exercise (did
anyone actually get this far anyway??).

One last important tip is when you calculate things from star_info in these subroutines, you can’t always count on
the arrays being allocated and filled with data (especially while the star is evolving on the pre-MS). If you want to do
a calculation in my_other_mlt() using the star_info pointer s you extracted, then you need to check that the
arrays are actually populated. One way to do this (not sure if it’s the best, but it has worked for me) is to wrap all your
calculations in an if-statement such as

if(k.gt.0) then
!Calculate things using arrays like s% P(k) without running into segfaults

endif

After all that effort, can you think of some stellar evolution contexts where this change would make a significant
difference?

3.7 Defining your own mixing prescription

You can also write your own mixing routine, based on what you see calculated in other subroutines such as
standard_scheme(), set_thermo_haline(), or semiconvection(). Notice how all of these are called
in similar ways from Get_results(). They all set a few variables:

1. mixing_type - an integer specifying what kind of mixing is occuring in this cell. See
mesa/mlt/public/mlt.def for their definition.

2. gradT - the actual temperature gradient determined for this cell, ∇.

3. D - the compositional diffusion coefficient which controls the speed of chemical mixing.

4. conv_vel - a characteristic velocity of this type of mixing, usually set to 3D/(mixing length) in an isotropic
process (cf. Fick’s Law).

5. d_gradT_dvb - partial derivatives of gradT with respect to all the other MLT variables (see the call structure
of Get_results() and compare to what’s passed to it in do_mlt_eval()) .

According to Bill (see this thread), the only partial derivative you explicitly need to calculate is that of gradT - the
others are already done for you in Get_results().

We won’t have time to implement a new mixing prescription here, but you will in Pascale’s lab - have fun!
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CHAPTER 4

Part 4 - other_* reference page

4.1 Intro

There are quite a few other_* routines (also referred to as hooks) that MESA provides. Rather than modifying the
private code, these are the way to access and modify MESA’s internal functions. If you’d like to modify something
that you don’t see an obvious subroutine for, then Bill will be happy to add a new one for you. Here’s a list of some of
the more commonly used hooks:

Please let us know (eg. by email to the list) if something becomes out of date, if you find an error, or if there’s
another use case you think we should explicitly mention for one of the hooks.

4.2 Hooks

• other_mlt() - Allows you to change the implementation of mixing length theory (MLT) that MESA uses
to determine what type of mixing occurs in a cell. The actual temperature gradient is also calculated here,
along with the diffusion coeffienct for mixing, among other related quantities. For details on the expected return
variables, see mesa/mlt/public/mlt_def.f and mesa/mlt/public/mlt_lib.f. Example uses
for this hook include defining your own local mixing prescription, modifying the thermal and compositional
transport rates for standard convection (or any other mixing type), etc. Note: Mixing is not actually performed
in this subroutine. If you want to modify how MESA mixes things, you need to look at other hooks such as
‘‘other_split_mix()‘‘ or ‘‘other_diffusion()‘‘

• other_energy() - Allows you to specify an anomalous heating/cooling rate in the star. This is pretty simple,
since it’s not replacing a call to another MESA routine like some of the other hooks.

• other_wind() - Allows you to specify a mass-loss prescription (eg. a formula for �̇� as a function of other
stellar variables). Can also be used for more general mass-loss scenarios like Roche-lobe overflow.

• other_eos() - Allows you to use your own implementation of an equation of state. An example would be
using FreeEOS within MESA.

• other_kap() - Allows you to implement your own routine for calculating opacities. Examples include
trying to calculate them on the fly instead of looking them up from tables (still too slow according to those who
have tried), as well as forcing things like pure electron conduction or electron scattering in certain regions of a
star/planet.

• other_torque() - Allows you to implement other sources of torque in rotating stars. This could be used,
for example, to implement a magnetic breaking prescription.

• other_mesh_functions() - Allows you to define other functions that MESA will examine when deter-
mining when to increase/decrease resolution.

15
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• other_diffusion() - Allows you to implement your own diffusion routine in between stellar time steps.
This bypasses the entire default diffusion solver, so you either need to copy/paste and make appropriate changes
or write your own from scratch.

• other_atm() - Allows you to specify a custom atmosphere boundary condition. Could be useful in trying to
contstruct models to match known planets.

• other_split_mix() - Allows you to modify the composition profiles after the mixing step.
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CHAPTER 5

Indices and tables

• genindex

• modindex

• search
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